Задачи «на проценты» с решениями.


Задачи «на проценты» - в большинстве случаев являются экономическими задачами, в которых идёт речь о вкладах в банк с тем или иным процентом. При их решении надо помнить, что процент есть сотая доля числа. Решение задач этого типа тесно связано с тремя алгоритмами: нахождения части от целого, восстановление целого по его известной части, нахождение процентного прироста. Рассмотрим эти алгоритмы.

  1. Пусть известна некоторая величина А, надо найти а % этой величины.

Если считать, что А есть 100%, а неизвестная часть х это а %, то из пропорции A/100=x/a

имеем x=Aa/100.

  1. Пусть известно, что некоторое число b составляет а % от неизвестной величины А. Требуется найти А.

Рассуждая аналогично, из пропорции получаем   A=100b/a.

  1. Пусть некоторая переменная величина А, зависящая от времени t, в начальный момент t0 имеет значение А0, а в момент t1 – значение А1.

Тогда абсолютный прирост величины А за время t1–t0 будет равен А1–А0; относительный прирост этой величины вычисляется по формуле       (A1-A0)/A0, а процентный прирост по формуле   ((A1-A0)/A0)100%.

Задача №1.

Известно, что вклад, находящийся в банке, с начала года возрастает к концу года на определённый процент (свой для каждого банка). В начале года 5/6 некоторого количества денег положили в первый банк. К концу года сумма этих вкладов стала равной 670 у.е., а к концу второго года – 749 у.е. Было подсчитано, что если бы первоначально исходного количества денег положили во второй банк, то по истечении одного года сумма вкладов в эти банки стала бы равной 710 у.е. В предложении, что исходное количество денег первоначально целиком положено в первый банк, определить величину вклада по истечении двух лет.

Решение.

Обозначим через x первоначальную сумму денег. Тогда через а обозначим процент, на который возрастает сумма за год в первом банке, а через b – во втором банке. К концу первого года сумму вклада в I банке стала равной (5x/6)(1+a/100), во II банке (x/6)(1+b/100), а к концу второго года(5x/6)(1+a/100)2 и (x/6)(1+b/100)2. По условию задачи сумма вкладов  в конце первого года составляет 670 у.е., а к концу второго года – 749 у.е., поэтому можно составить два уравнения:

(5x/6)(1+a/100)+(x/6)(1+b/100)=670 (1)

(5x/6)(1+a/100)2+(x/6)(1+b/100)2=749 (2)

 

Если во второй банк положить 5x/6  у.е., а в первый – x/6 у.е, то сумма вкладов к концу года составила бы:

(5x/6)(1+b/100)+(x/6)(1+a/100),

 

что равнялось бы 710 у.е. Поэтому получим третье уравнение:

(5x/6)(1+b/100)+(x/6)(1+a/100)=710 (3)

 

Для нахождения известного х составим систему уравнений из (1) и (3) и решим её:

1+a/100=660/x

1+b/100=720/x

Подставляя 660/x вместо 1+a/100 и 720/x вместо 1+b/100 в уравнение (2), приходим к уравнению (5x/6)(660/x)2+(x/6)(720/x)2=749, имеющему один корень: x=660, но тогда: 1+a/100=660/600=1,1

Если исходное количество денег положить на два года, то к концу второго года величина вклада составит 726 у.е.

Ответ 726 у.е.

Задача №6.

Рабочий положил на хранение в сберегательный банк 5000 руб.  По истечении одного года к его вкладу были причислены процентные деньги, и в то же время он увеличил свой вклад ещё на 5000 руб., а по истечении ещё одного года попросил выдать ему накопленные процентные деньги. Сколько процентов в год начисляет сбербанк, если рабочий получил 1232 руб. процентных денег, оставив вклад в 10 000 руб. на новый срок?

Решение.

Пусть x% в год начисляет сбербанк, а y% - процент за 2 года. x+x+y -  весь начисленный процент. По условию задачи 2x+y=1232 (руб.)

За I и II начисленный процент равен 5000?0,01x=50x, а процент за оба года равен 0,01x?(5000+50x).

Составим уравнение:

50x+50x+0,01x?(5000+50x)=1232

Решив это уравнение 50x+50x+0,01x(5000+50x)=1232

100x+50x+0,5x2-1232=0

0,5x2+150x-1232=0

D=b2-4ac=1502-4?0,5?(-1232)=24964, D>0, два корня.

x1=-308

x2=8

Найдём два значения для х: х1=-308 – не удовлетворяет условию задачи, х2=8. Значит, сбербанк начисляет в год 8%.

Ответ: 8%

 

Комментарии  

 
0 луиза, 29 Апреля 2013 г. в 15:59 | цитировать
ничего не понятно , ужасный сайт
 

Написать комментарий

*

*

*
Защитный код
обновить