Пусть A , B , C и D – четыре точки в пространстве. Докажите, что середины отрезков AB , BC , CD и DA служат вершинами параллелограмма.
Решение: Пусть K , L , M и N – середины отрезков AB , BC , CD и DA соответственно. Тогда KL и MN – средние линии треугольников ABC и ADC . Значит, KL || MN и KL = MN . Следовательно, KLMN – параллелограмм.
Представьтесь*
Ваш комментарий*