10. До снижения цен товар стоил 300 рублей, а после снижения цен стал стоить 273 рубля. На сколько процентов была снижена цера товара?
11. До снижения цен товар стоил 400 рублей, а после снижения цен стал стоить 352 рубля. На сколько процентов была снижена цена товара?
12. До повышения цен товар стоил 600 рублей, а после повышения цен стал стоить 678 рублей. На сколько процентов была повышена цена товара?
13. До повышения цен товар стоил 500 рублей, а после повышения цен стал стоить 545 рублей. На сколько процентов была повышена цена товара?
14. Стоимость акций снизилась на 60%. Во сколько раз подешевели акции?
15. Стоимость акций снизилась на 84%. Во сколько раз подешевели акции?
16. Стоимость акций выросла на 117%. Во сколько раз подорожали акции?
17. Стоимость акций выросла на 152%. Во сколько раз подорожали акции?
18. Производство некоторого товара увеличилось в 37 раз. На сколько процентов выросло производство?
19. Производство некоторого товара увеличилось в 96 раз. На сколько процентов выросло производство?
20. Себестоимость изделия снизилась в 8 раз. На сколько процентов снизилась себестоимость?
21. Себестоимость изделия снизилась в 16 раз. На сколько процентов снизилась себестоимость?
22. В сосуд, содержащий 13 литров 18%-го водного раствора некоторого вещества, добавили пять литров воды. Найдите концентрацию получившегося раствора.
23. В сосуд, содержащий 11 литров 17%-го водного раствора некоторого вещества, добавили шесть литров воды. Найдите концентрацию получившегося раствора.
24. Смешали некоторое количество 11 %-го раствора некоторого вещества с таким же количеством 19%- го раствора этого же вещества. Найдите концентрацию получившегося раствора.
Задания представлены в виде текстовых задач.
10. Подоходный налог установлен в размере 13%. До вычета подоходного налога 1% заработной платы отчисляется в пенсионный фонд. Работнику начислено 5420 рублей. Сколько он получит после указанных вычетов?
11. Инфляция составляет 10% каждый месяц. Сколько процентов составила инфляция за два месяца?
12. В результате мелиоративных мероприятий посевные площади увеличились на 150% по сравнению с прошлым годом. Найдите величину посевных площадей этого года, если в прошлом году она была 60 га.
13.Морская вода содержит 5% соли по массе. Сколько килограммов пресной воды нужно добавить к 50 кг морской воды, чтобы содержание соли в полученном растворе составило 2%? 75 кг
14. Морская вода содержит 5% соли по массе. Сколько пресной воды нужно добавить к 30 кг морской воды, чтобы концентрация соли составляла 1,5 %? 70кг
15.Свежие грибы содержат по весу 90% воды, а сухие – 12%. Сколько грибов сухих грибов получится из 22 гк свежих грибов? 2,5 кг
16. К раствору, который содержит 40 г соли, добавили 200 г воды, после чего его концентрация уменьшилась на 10%. Сколько воды содержал раствор и какая была его концентрация? 160г, 20%
18.Сплав цинка и меди содержал на 1280 г меди больше, чем цинка. После того как из сплава удалили 60% цинка и 30% меди, его масса стала равной 1512 г. Какова была первоначальная масса сплава в граммах? 2400г
19.Два куска латуни имеют массу 60 кг. Первый кусок содержит 10 кг чистой меди, а второй –8 кг. Сколько процентов меди содержит первый кусок, если второй содержит меди на 15% больше первого? 25%
20. Вычислить вес и процентное содержание серебра в сплаве с медью, зная, что сплавив его с 3 кг чистого серебра, получат сплав, содержащий 90% серебра, а сплавив его с 2 кг сплава, содержащего 90% серебра, получат сплав, содержащий 84% содержания серебра? 2,4 кг, 80%
21. Два раствора, из которых первый содержит 0,8 кг, а второй 0,6 кг безводной кислоты, соединили вместе и получили 10 кг нового раствора серной кислоты. Вычислите вес первого и второго растворов в смеси, если известно, что безводной серной кислоты содержится в первом растворе на 10% больше. 4 кг, 6 кг.
22. В сосуде было 12 л соляной кислоты. Часть кислоты отлили и сосуд долили водой. Затем отлили столько же и долили водой. Сколько жидкости отливали каждый раз, если в сосуде оказался 25% раствор кислоты.
6л
23. Смешали 30% раствор соляной кислоты с 10% и получили 600г 15% раствора. Сколько граммов каждого раствор взяли? 150г, 450г
24. В 500 кг руды содержится некоторое количество железа. После удаления из руды 200 кг примесей, содержащих в среднем 12,5% железа, в оставшейся руде содержание железа повысилось на 20%. Определить какое количество железа осталось в руде? 187,5 кг
25. Имеется кусок сплава меди с оловом общей массой 12 кг, содержащий 45% меди. сколько чистого олова надо прибавитьк этому куску сплава, чтобы получить новый сплав, содержащий 40% меди? 1,5 кг
26. Яблоки при сущке теряют 85% своей массы. сколько надо взять свежих яблок, чтобы после сушки получилось 30кг сушеных? 200 кг
27. В сплаве олова и меди медь составляет 85%. сколько надо взять сплава. чтобы в нем содержалось 4,5 кг олова? 30 кг
28. Зерна кофе при обжарке теряют 12% своей массы. Сколько свежего кофе надо взять, чтобы получить 2,2 кг жареного? 2,5 кг
29. Масса керосина, получаемого при перегонке, составляет 30% начальной массы нефти. Сколько надо взять нефти, чтобы получить 12 т керосина? 40 т
30. В свекле содержится 21% сахара. Сколько надо взять свеклы, чтобы получить 42 кг сахара? 200 кг
31. Морская вода содержит 5% соли. Сколько надо взять морской воды, чтобы после выпаривания получить 20 кг соли? 400 кг
32. При обработке отливки 13% её массы идет в стружку. какова была масса отливки, если масса обработанной детали составила 8,7 кг? 10 кг
33. Железная руда содержит 70% чистого железа. Сколько нужно взять железной руды, чтобы получилось 210 кг чистого железа? 300 кг
34. Сколько килограммов воды нужно выпарить из 0,5 т целлюлозной массы, содержащей 85% воды, чтобы получить массу с содержанием 75% воды?
200 кг
35. 40% раствор серной кислоты разбавили 60% раствором, после чего добавили 5 кг чистой воды и получили 20% раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80% раствора серной кислоты, то получили бы раствор 70% концентрации. Сколько было 40% и 60% раствора кислоты?
1 кг, 2 кг
36. Сколько 90% и 60% серной кислоты нужно взять, чтобы получить 5,4 кг 80% раствора серной кислоты? 3,6 кг и 1,8 кг
37. Одна руда содержит 72% железа и 28% пустой породы, а другая 56% железа и 42% пустой поролы. Сколько нужно взять первой и второй руды, чтобы получить 10 т руды с содержанием 60% железа? 7,5 т и 2,5 т
38. *Имеются три сплава. Первый содержит 30% никеля и 70% меди; второй – 10% меди и 90% марганца; третий – 15% никеля, 25% меди и 60% марганца. Из них необходимо приготовить новый сплав, содержащий 40% марганца. Какое наибольшее и наименьшее процентное содержание меди может быть в этом сплаве? 40% и 43,1/3%
39. *Имеется три сплава. Первый содержит 70% олова и 30% свинца; второй 80% олова и 20% цинка; третий 50% олова, 10% свинца и 40% цинка. Их них необходимо приготовить слав. содержащий 15% свинца. Какое наибольшее и наименьшее содержание олова может быть в новом сплаве.
40. *Имеются три смеси, составленные из трех элементов А, В и С. В первую месь входят только элементы А и В в весовом отношении 3:5; во вторую смесь входят элементы В и С в весовом отношении 1:2, в третью смесь входят элементы А и С в весовом отношении 2:3. В каком отношении нужно взять эти смеси, чтобы во вновь полученной смеси элементы А, В и С содержались в весовом отношении 3:5:2? 20:6:3
41. При выпаривании из 8 кг рассола получили 2 кг пищевой соли, содержащей 10% воды. Каково % содержание воды в рассоле? 90%
42. Имеется руда с содержанием меди 6% и 11%. сколько «бедной» руды нужно взять, чтобы получить при смешивании с «богатой» 20 т руды с содержанием меди 8%? 12 т
43. Один сплав состоит из двух металлов, входящих в него в отношении 1:2, а другой сплав содержит те же металлы в отношении 2:3. Из скольких частей обоих сплавов можно получить новый сплав, содержащий те же металлы в отношении 17:27? 3 и 7
44. Имеются два раствора одной и той же соли в воде. Для получения смеси, содержащей 10 г соли и 90 г воды, берут первого раствора вдвое больше по массе, чем второго. Через неделю из каждого килограмма первого и второго раствора испарилось по 200 г воды и для получения такой же смеси, как и раньше, требуется первого раствора уже вчетверо больше по массе, чем второго. Сколько граммов соли содержалось первоначально в 100 г каждого раствора? 5 г и 20 г
45. *В пустой резервуар по двум трубам одновременно начинают поступать чистая вода и раствор кислоты постоянной концентрации. После наполнения резервуара в нем получился 5% раствор кислоты. Если бы в тот момент, когда резервуар был наполнен наполовину, подачу воды прекратили, то после наполнения резервуара получили бы 10% раствор кислоты. Определить, какая труба подает жидкость быстрее и во сколько раз? Первая в 2 раза быстрее
46. *Имеются два куска сплава меди и цинка с процентным содержанием меди p% и q% соответственно. В каком отношении нужно взять эти сплавы, чтобы переплавив взятые куски вместе, получить сплав, содержащий r% меди? (r-q)/(p-r)
47. *Три одинаковые пробирки наполнены до половины растворами спирта. После того как содержимое третьей пробирки разлили поровну в первые две, объемная концентрация в первой уменьшилась на 20% от первоначальной, а во второй увеличилась на 10% от первоначального значения. Во сколько раз первоначальное количество спирта в первой пробирке превышало первоначальное количество спирта во второй пробирке? 13:4
Представьтесь*
Ваш комментарий*